Um cálculo de previsão Exemplos A.1 Métodos de cálculo da previsão Doze métodos de cálculo de previsões estão disponíveis. A maioria desses métodos prevê um controle limitado de usuários. Por exemplo, o peso colocado em dados históricos recentes ou o intervalo de datas dos dados históricos usados nos cálculos pode ser especificado. Os exemplos a seguir mostram o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos a seguir usam os mesmos dados de vendas de 2004 e 2005 para produzir uma previsão de vendas de 2006. Além do cálculo da previsão, cada exemplo inclui uma previsão simulada de 2005 para um período de espera de três meses (opção de processamento 19 3), que é então utilizado para porcentagem de precisão e cálculos de desvio absoluto médio (vendas reais em comparação com previsão simulada). A.2 Critérios de avaliação do desempenho da previsão Dependendo da sua seleção de opções de processamento e das tendências e padrões existentes nos dados de vendas, alguns métodos de previsão serão melhores do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Também é improvável que um método de previsão que forneça bons resultados em um estágio do ciclo de vida de um produto permaneça adequado ao longo de todo o ciclo de vida. Você pode escolher entre dois métodos para avaliar o desempenho atual dos métodos de previsão. Estes são Mean Absolute Deviation (MAD) e Percentagem de Precisão (POA). Ambos os métodos de avaliação de desempenho exigem dados de vendas históricos para um período de tempo especificado pelo usuário. Esse período de tempo é chamado de período de espera ou períodos de melhor ajuste (PBF). Os dados neste período são usados como base para recomendar qual dos métodos de previsão a serem utilizados na realização da próxima projeção de previsão. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. Os dois métodos de avaliação de desempenho de previsão são demonstrados nas páginas seguindo os exemplos dos doze métodos de previsão. A.3 Método 1 - Porcentagem especificada no último ano Este método multiplica os dados de vendas do ano anterior por um fator especificado pelo usuário, por exemplo, 1.10 para um aumento de 10, ou 0,97 para uma diminuição de 3. Histórico de vendas obrigatório: um ano para calcular a previsão mais o número de períodos de tempo especificado pelo usuário para avaliar o desempenho da previsão (opção de processamento 19). A.4.1 Cálculo de Previsão Faixa de histórico de vendas para usar no cálculo do fator de crescimento (opção de processamento 2a) 3 neste exemplo. Soma os três meses finais de 2005: 114 119 137 370 Soma os mesmos três meses do ano anterior: 123 139 133 395 O fator calculado 370395 0.9367 Calcule as previsões: vendas de janeiro de 2005 128 0.9367 119.8036 ou cerca de 120 de fevereiro de 2005 vendas 117 0,9367 109,5939 ou cerca de 110 de março de 2005 vendas 115 0,9367 107,7205 ou cerca de 108 A.4.2 Cálculo de Previsão Simulado Sume os três meses de 2005 antes do período de retenção (julho, agosto, setembro): 129 140 131 400 Soma os mesmos três meses para o Ano anterior: 141 128 118 387 O fator calculado 400387 1.033591731 Calcular previsão simulada: outubro de 2004 vendas 123 1.033591731 127.13178 novembro de 2004 vendas 139 1.033591731 143.66925 dezembro de 2004 vendas 133 1.033591731 137.4677 A.4.3 Porcentagem de cálculo de precisão POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 Cálculo do desvio absoluto médio MAD (127.13178 - 114 143.66925 - 119 137.4677- 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 Método 3 - Ano passado para este ano Este método copia dados de vendas do ano anterior para o próximo ano. Histórico de vendas obrigatório: um ano para calcular a previsão mais o número de períodos de tempo especificados para avaliar o desempenho da previsão (opção de processamento 19). A.6.1 Cálculo da Previsão Número de períodos a serem incluídos na média (opção de processamento 4a) 3 neste exemplo Para cada mês da previsão, a média dos dados dos três meses anteriores. Previsão de janeiro: 114 119 137 370, 370 3 123.333 ou previsão de 123 de fevereiro: 119 137 123 379, 379 3 126.333 ou 126 Previsão de março: 137 123 126 379, 386 3 128.667 ou 129 A.6.2 Cálculo de Previsão Simulado vendas de outubro de 2005 (129 140 131) 3 133.3333 Vendas de novembro de 2005 (140 131 114) 3 128.3333 Vendas de dezembro de 2005 (131 114 119) 3 121.3333 A.6.3 Porcentagem de cálculo de precisão POA (133.3333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Absoluto médio Cálculo do desvio MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 Método 5 - Aproximação linear Aproximação linear calcula uma tendência com base em dois pontos de dados de histórico de vendas. Esses dois pontos definem uma linha de tendência direta que é projetada para o futuro. Use este método com cautela, pois as previsões de longo alcance são alavancadas por pequenas mudanças em apenas dois pontos de dados. Histórico de vendas obrigatório: o número de períodos a serem incluídos na regressão (opção de processamento 5a), mais 1 mais o número de períodos de tempo para avaliar o desempenho da previsão (opção de processamento 19). A.8.1 Cálculo da Previsão Número de períodos a serem incluídos na regressão (opção de processamento 6a) 3 neste exemplo Para cada mês da previsão, adicione o aumento ou diminuição durante os períodos especificados antes do período de retenção no período anterior. Média dos três meses anteriores (114 119 137) 3 123.3333 Resumo dos três meses anteriores com peso considerado (114 1) (119 2) (137 3) 763 Diferença entre os valores 763 - 123.3333 (1 2 3) 23 Razão ( 12 22 32) - 2 3 14 - 12 2 Valor1 DiferençaRatio 232 11,5 Valor2 Média - valor1 proporção 123.3333 - 11,5 2 100.3333 Previsão (1 n) valor1 valor2 4 11,5 100.3333 146.333 ou 146 Previsão 5 11.5 100.3333 157.8333 ou 158 Previsão 6 11.5 100.3333 169.3333 Ou 169 A.8.2 Cálculo de Previsão Simulado Vendas de outubro de 2004: Média dos três meses anteriores (129 140 131) 3 133.3333 Resumo dos três meses anteriores com peso considerado (129 1) (140 2) (131 3) 802 Diferença entre o Valores 802 - 133.3333 (1 2 3) 2 Razão (12 22 32) - 2 3 14 - 12 2 Valor1 Diferença Rácio 22 1 Valor2 Rácio médio - valor1 133.3333 - 1 2 131.3333 Previsão (1 n) valor1 valor2 4 1 131.3333 135.3333 Novembro 2004 vendas Média dos três meses anteriores (140 131 114) 3 128.3333 Resumo dos três meses anteriores com peso considerado (140 1) (131 2) (114 3) 744 Diferença entre os valores 744 - 128.3333 (1 2 3) -25.9999 Valor1 DiferençaRatio -25.99992 -12.9999 Valor2 Rácio médio - valor1 128.3333 - (-12.9999) 2 154.3333 Previsão 4 -12.9999 154.3333 102.3333 Vendas de dezembro de 2004 Média dos três meses anteriores (131 114 119) 3 121.3333 Resumo dos três meses anteriores com peso considerado ( 131 1) (114 2) (119 3) 716 Diferença entre os valores 716 - 121.3333 (1 2 3) -11.9999 Valor1 DiferençaRatio -11.99992 -5.9999 Valor2 Taxa média - valor1 121.3333 - (-5.9999) 2 133.3333 Previsão 4 (-5.9999 ) 133.3333 109.3333 A.8.3 Porcentagem do Cálculo de Precisão POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 Cálculo médio do desvio absoluto MAD (135,33 - 114 102,33 - 119 109,33 - 137) 3 21,88 A.9 Método 7 - Secon D Grau Aproximação A regressão linear determina valores para a e b na fórmula de previsão Y a bX com o objetivo de ajustar uma linha reta aos dados do histórico de vendas. A Aproximação do Segundo Grau é semelhante. No entanto, esse método determina valores para a, b e c na fórmula de previsão Y a bX cX2 com o objetivo de ajustar uma curva aos dados do histórico de vendas. Este método pode ser útil quando um produto está na transição entre os estágios de um ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estágios de crescimento, a tendência de vendas pode acelerar. Por causa do segundo termo da ordem, a previsão pode rapidamente se aproximar do infinito ou diminuir para zero (dependendo se o coeficiente c é positivo ou negativo). Portanto, esse método é útil apenas no curto prazo. Especificações de previsão: as fórmulas encontram a, b e c para ajustar uma curva a exatamente três pontos. Você especifica n na opção de processamento 7a, o número de períodos de tempo a serem acumulados em cada um dos três pontos. Neste exemplo n 3. Portanto, os dados de vendas reais de abril a junho são combinados no primeiro ponto, Q1. De julho a setembro são adicionados para criar Q2, e outubro a dezembro somam para o terceiro trimestre. A curva será ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas obrigatório: 3 n períodos para calcular a previsão, além do número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). Número de períodos para incluir (opção de processamento 7a) 3 neste exemplo Use os blocos anteriores (3 n) meses em três meses: Q1 (Abr-Jun) 125 122 137 384 Q2 (Jul-Sep) 129 140 131 400 Q3 ( Out - Dec) 114 119 137 370 O próximo passo envolve o cálculo dos três coeficientes a, b e c a serem utilizados na fórmula de previsão Y a bX cX2 (1) Q1 a bX cX2 (onde X 1) abc (2) Q2 Um bX cX2 (onde X 2) a 2b 4c (3) Q3 a bX cX2 (onde X 3) a 3b 9c Resolva as três equações simultaneamente para encontrar b, a e c: Subtrair a equação (1) da equação (2) E resolva para b (2) - (1) Q2 - Q1 b 3c Substitua esta equação por b na equação (3) (3) Q3 a 3 (Q2 - Q1) - 3c c Finalmente, substitua estas equações por a e b em Equação (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 O método de Aproximação do Segundo Grau calcula a, b e c da seguinte maneira: a Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 -23) 85 Y a bX cX2 322 85X (-23) X2 Janela até a previsão de março (X4): (322 340 - 368) 3 2943 98 Por período de previsão de abril a junho (X5): (322 425-575) 3 57,3333 ou 57 por período de previsão de julho a setembro (X6): (322 510 - 828) 3 1,33 ou 1 por período de outubro a dezembro (X7) (322 595 - 11273 -70 A.9.2 Cálculo de Previsão Simulado Outubro, Novembro e Dezembro de 2004 vendas: Q1 (Jan-Mar) 360 Q2 (Abr-Jun) 384 Q3 (Jul-Sep) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 b (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Porcentagem do Cálculo de Precisão POA (136 136 136) (114 119 137) 100 110,27 A.9.4 Cálculo do desvio absoluto médio MAD (136 - 114 136 - 119 136 - 137) 3 13,33 A.10 Método 8 - Método flexível O método flexível (Percentagem sobre n meses prévios) é semelhante ao método 1, Percentagem acima do último ano. Ambos os métodos multiplicam os dados de vendas de um período de tempo anterior por um fator especificado pelo usuário, então, projete esse resultado no futuro. No método Percent Over Over Year, a projeção é baseada em dados do mesmo período do ano anterior. O Método Flexível adiciona a capacidade de especificar um período de tempo diferente do mesmo período do ano passado para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 1.15 na opção de processamento 8b para aumentar os dados anteriores do histórico de vendas em 15. Período base. Por exemplo, n 3 fará com que a primeira previsão baseie-se em dados de vendas em outubro de 2005. Histórico de vendas mínimo: o usuário especificou o número de períodos de volta ao período base, além do número de períodos de tempo necessários para avaliar o desempenho previsto ( PBF). A.10.4 Cálculo médio do desvio absoluto MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 Método 9 - Média móvel ponderada O método da média móvel ponderada (WMA) é semelhante ao Método 4, Média móvel (MA). No entanto, com a média móvel ponderada, você pode atribuir pesos desiguais aos dados históricos. O método calcula uma média ponderada do histórico recente de vendas para chegar a uma projeção para o curto prazo. Os dados mais recentes geralmente são atribuídos a um peso maior do que os dados mais antigos, portanto, isso torna a WMA mais sensível às mudanças no nível de vendas. No entanto, a previsão de viés e erros sistemáticos ainda ocorrem quando o histórico de vendas do produto exibe uma forte tendência ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros, em vez de produtos nos estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem usados no cálculo da previsão. Por exemplo, especifique n 3 na opção de processamento 9a para usar os três períodos mais recentes como base para a projeção no próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas será lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responderá mais rápido a mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O peso atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar para 1,00. Por exemplo, quando n 3, atribua pesos de 0,6, 0,3 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). MAD (133,5 - 114 121,7 - 119 118,7 - 137) 3 13,5 A.12 Método 10 - Suavização linear Este método é semelhante ao Método 9, Média de Movimento Ponderada (WMA). No entanto, em vez de atribuir arbitrariamente pesos aos dados históricos, uma fórmula é usada para atribuir pesos que diminuem linearmente e somam para 1,00. O método então calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Como é verdade para todas as técnicas de previsão média móvel média, tendência de previsão e erros sistemáticos ocorrem quando o histórico de vendas do produto exibe uma forte tendência ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros, em vez de produtos nos estágios de crescimento ou obsolescência do ciclo de vida. N o número de períodos de histórico de vendas a serem usados no cálculo da previsão. Isso é especificado na opção de processamento 10a. Por exemplo, especifique n 3 na opção de processamento 10b para usar os três períodos mais recentes como base para a projeção no próximo período de tempo. O sistema atribuirá automaticamente os pesos aos dados históricos que recuam linearmente e somam para 1,00. Por exemplo, quando n 3, o sistema atribuirá pesos de 0,5, 0,3333 e 0,1, com os dados mais recentes recebendo o maior peso. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.12.1 Cálculo da Previsão Número de períodos a serem incluídos na média de suavização (opção de processamento 10a) 3 neste exemplo Relação para um período anterior 3 (n2 n) 2 3 (32 3) 2 36 0.5 Relação para dois períodos anteriores 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. Relação para três períodos anteriores 1 (n2 n) 2 1 (32 3) 2 16 0.1666 .. Previsão de janeiro: 137 0.5 119 13 114 16 127.16 ou 127 Previsão de fevereiro: 127 0.5 137 13 119 16 129 Previsão de março: 129 0,5 127 13 137 16 129,666 ou 130 A.12.2 Cálculo de Previsão Simulado outubro de 2004 vendas 129 16 140 26 131 36 133.6666 novembro 2004 vendas 140 16 131 26 114 36 124 dezembro 2004 vendas 131 16 114 26 119 36 119.3333 A.12.3 Porcentagem do Cálculo de Precisão POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 Cálculo do Desvio Absorvo Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 Método 11 - Suavização exponencial Este método é semelhante ao Método 10, Suavização linear. No Suavização linear, o sistema atribui pesos aos dados históricos que recuam linearmente. Em suavização exponencial, o sistema atribui pesos que se deterioram exponencialmente. A equação de previsão de suavização exponencial é: Previsão a (Vendas reais anteriores) (1 - a) Previsão anterior A previsão é uma média ponderada das vendas reais do período anterior e da previsão do período anterior. A é o peso aplicado às vendas reais para o período anterior. (1 - a) é o peso aplicado à previsão do período anterior. Valores válidos para um intervalo de 0 a 1, e geralmente caem entre 0,1 e 0,4. A soma dos pesos é 1,00. A (1 - a) 1 Você deve atribuir um valor para a constante de suavização, a. Se você não atribuir valores para a constante de suavização, o sistema calcula um valor assumido com base no número de períodos de histórico de vendas especificado na opção de processamento 11a. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou a magnitude das vendas. Valores válidos para um intervalo de 0 a 1. n o intervalo de dados do histórico de vendas para incluir nos cálculos. Geralmente, um ano de dados de histórico de vendas é suficiente para estimar o nível geral de vendas. Para este exemplo, foi escolhido um pequeno valor para n (n 3) para reduzir os cálculos manuais necessários para verificar os resultados. O suavização exponencial pode gerar uma previsão baseada em um ponto de dados histórico tão pouco quanto possível. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). A.13.1 Cálculo de Previsão Número de períodos a serem incluídos na média de suavização (opção de processamento 11a) 3 e fator alfa (opção de processamento 11b) em branco neste exemplo, um fator para os dados de vendas mais antigos 2 (11) ou 1 quando especificado em alfa Um fator para os 2º dados de vendas mais antigos 2 (12), ou alfa quando o alfa é especificado como um fator para os 3º dados de vendas mais antigos 2 (13), ou alfa quando o alfa é especificado como um fator para os dados de vendas mais recentes 2 (1n) , Ou alfa quando o alfa é especificado em novembro Sm. Avg. A (outubro atual) (1 - a) outubro Sm. Avg. 1 114 0 0 114 Dezembro Sm. Avg. A (Novembro Actual) (1 - a) Novembro Sm. Avg. 23 119 13 114 117.3333 Previsão de janeiro a (dezembro atual) (1 - a) dezembro Sm. Avg. 24 137 24 117.3333 127.16665 ou 127 Fevereiro Previsão Previsão de janeiro 127 Março Previsão Previsão de janeiro 127 A.13.2 Cálculo de previsão simulada Julho, 2004 Sm. Avg. 22 129 129 agosto Sm. Avg. 23 140 13 129 136.3333 setembro Sm. Avg. 24 131 24 136.3333 133.6666 outubro, 2004 vendas Sep Sm. Avg. 133.6666 Agosto, 2004 Sm. Avg. 22 140 140 setembro Sm. Avg. 23 131 13 140 134 outubro Sm. Avg. 24 114 24 134 124 novembro, 2004 vendas Sep Sm. Avg. 124 setembro 2004 Sm. Avg. 22 131 131 outubro Sm. Avg. 23 114 13 131 119.6666 novembro Sm. Avg. 24 119 24 119.6666 119.3333 dezembro 2004 vendas Sep Sm. Avg. 119.3333 A.13.3 Porcentagem do Cálculo de Precisão POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 Cálculo do Desvio Absorvente Médio MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 Método 12 - Suavização Exponencial Com Tendência e Sazonalidade Este método é semelhante ao Método 11, Suavização Exponencial em que uma média suavizada é calculada. No entanto, o Método 12 também inclui um termo na equação de previsão para calcular uma tendência suavizada. A previsão é composta por uma média lisa ajustada para uma tendência linear. Quando especificado na opção de processamento, a previsão também é ajustada para a sazonalidade. A constante de suavização utilizada no cálculo da média suavizada para o nível geral ou a magnitude das vendas. Valores válidos para o intervalo alfa de 0 a 1. b a constante de suavização utilizada no cálculo da média suavizada para o componente de tendência da previsão. Valores válidos para o intervalo beta de 0 a 1. Se um índice sazonal é aplicado à previsão a e b são independentes um do outro. Eles não precisam adicionar a 1.0. Histórico de vendas mínimo exigido: dois anos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (PBF). O método 12 usa duas equações de alisamento exponencial e uma média simples para calcular uma média suavizada, uma tendência suavizada e um fator sazonal médio simples. A.14.1 Cálculo da previsão A) Uma média MAD suavemente exponencial (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 Avaliando as previsões Você pode selecionar os métodos de previsão para gerar até doze previsões para cada produto. Cada método de previsão provavelmente criará uma projeção ligeiramente diferente. Quando milhares de produtos são previstos, não é prático tomar uma decisão subjetiva sobre qual das previsões usar em seus planos para cada um dos produtos. O sistema avalia automaticamente o desempenho para cada um dos métodos de previsão que você seleciona e para cada um dos produtos previstos. Você pode escolher entre dois critérios de desempenho, desvio médio absoluto (MAD) e porcentagem de precisão (POA). MAD é uma medida de erro de previsão. O POA é uma medida do viés de previsão. Ambas as técnicas de avaliação de desempenho exigem dados reais do histórico de vendas para um período de tempo especificado pelo usuário. Este período de história recente é chamado de período de espera ou períodos de melhor ajuste (PBF). Para medir o desempenho de um método de previsão, use as fórmulas de previsão para simular uma previsão para o período histórico de retenção. Normalmente, haverá diferenças entre os dados reais de vendas e a previsão simulada para o período de retenção. Quando vários métodos de previsão são selecionados, esse mesmo processo ocorre para cada método. Várias previsões são calculadas para o período de espera e comparadas com o histórico de vendas conhecido para esse mesmo período de tempo. O método de previsão que produz a melhor combinação (melhor ajuste) entre a previsão e as vendas reais durante o período de suspensão é recomendado para uso em seus planos. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. A.16 Desvio absoluto médio (MAD) MAD é a média (ou média) dos valores absolutos (ou magnitude) dos desvios (ou erros) entre dados reais e previsão. MAD é uma medida da magnitude média dos erros a esperar, dado um método de previsão e histórico de dados. Como os valores absolutos são usados no cálculo, erros positivos não cancelam erros negativos. Ao comparar vários métodos de previsão, aquele com menor MAD mostrou ser o mais confiável para esse produto para esse período de espera. Quando a previsão é imparcial e os erros são normalmente distribuídos, existe uma relação matemática simples entre MAD e outras duas medidas comuns de distribuição, desvio padrão e Erro quadrático médio: A.16.1 Porcentagem de Precisão (POA) Porcentagem de Precisão (POA) é Uma medida de previsão de viés. Quando as previsões são consistentemente muito altas, os estoques se acumulam e os custos dos estoques aumentam. Quando as previsões são consistentemente duas baixas, os estoques são consumidos e o serviço ao cliente diminui. Uma previsão que é 10 unidades muito baixa, então 8 unidades muito altas, então 2 unidades muito altas, seria uma previsão imparcial. O erro positivo de 10 é cancelado por erros negativos de 8 e 2. Erro Actual - Previsão Quando um produto pode ser armazenado no inventário e quando a previsão é imparcial, uma pequena quantidade de estoque de segurança pode ser usada para amortecer os erros. Nessa situação, não é tão importante eliminar erros de previsão, pois é gerar previsões imparciais. No entanto, nas indústrias de serviços, a situação acima seria vista como três erros. O serviço ficaria insuficiente no primeiro período, e depois o excesso de pessoal para os próximos dois períodos. Nos serviços, a magnitude dos erros de previsão geralmente é mais importante do que o previsão de viés. O somatório durante o período de suspensão permite erros positivos para cancelar erros negativos. Quando o total de vendas reais excede o total de vendas previstas, a proporção é superior a 100. É claro que é impossível ter mais de 100 precisões. Quando uma previsão é imparcial, a proporção de POA será de 100. Portanto, é mais desejável ter 95 precisos do que ser 110 precisos. O critério POA seleciona o método de previsão que tem uma razão POA mais próxima de 100. O script nesta página melhora a navegação do conteúdo, mas não altera o conteúdo de forma alguma. Movendo os modelos de suavização média e exponencial Como um primeiro passo para mover além dos modelos médios, Modelos de caminhada aleatórios e modelos de tendência linear, padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. O pressuposto básico por trás da média e dos modelos de suavização é que as séries temporais são localmente estacionárias com uma média que varia lentamente. Por isso, tomamos uma média móvel (local) para estimar o valor atual da média e, em seguida, use isso como a previsão para um futuro próximo. Isso pode ser considerado como um compromisso entre o modelo médio e o modelo random-walk-without-drift. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel geralmente é chamada de uma versão quotsmoothedquot da série original porque a média a curto prazo tem o efeito de suavizar os solavancos na série original. Ao ajustar o grau de alisamento (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ideal entre o desempenho dos modelos de caminhada aleatória e média. O tipo mais simples de modelo de média é o. Média Móvel simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para repousar Para uma previsão das séries temporais Y feitas o mais cedo possível por um determinado modelo.) Esta média é centrada no período t (m1) 2, o que implica que a estimativa da média local tende a ficar para trás do verdadeiro Valor da média local em cerca de (m1) 2 períodos. Assim, dizemos que a idade média dos dados na média móvel simples é (m1) 2 em relação ao período para o qual a previsão é calculada: esta é a quantidade de tempo pelo qual as previsões tenderão a atrasar os pontos de viragem nos dados . Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados na resposta a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m for muito grande (comparável ao comprimento do período de estimativa), o modelo SMA é equivalente ao modelo médio. Tal como acontece com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot para os dados, ou seja, os menores erros de previsão em média. Aqui é um exemplo de uma série que parece exibir flutuações aleatórias em torno de uma média que varia lentamente. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de 1 termo: o modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo, elege muito da quotnoisequot no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentemos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais lisas: a média móvel simples de 5 meses produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nesta previsão é de 3 ((51) 2), de modo que tende a atrasar os pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não se desviam até vários períodos depois). Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se ampliam à medida que o horizonte de previsão aumenta. Isso obviamente não está correto. Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se ampliar para esse modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões do horizonte mais longo. Por exemplo, você poderia configurar uma planilha em que o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc., dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo, adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais de um efeito de atraso: a idade média é agora de 5 períodos (91) 2). Se tomarmos uma média móvel de 19 termos, a média de idade aumenta para 10: Observe que, de fato, as previsões estão atrasadas em torno de 10 pontos. Qual quantidade de suavização é melhor para esta série. Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3 termos: Modelo C, a média móvel de 5 termos, produz o menor valor de RMSE por uma pequena margem ao longo dos 3 Médias temporais e de 9 termos, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferimos um pouco mais de capacidade de resposta ou um pouco mais de suavidade nas previsões. (Retornar ao topo da página.) Browns Suavização exponencial simples (média móvel ponderada exponencialmente) O modelo de média móvel simples descrito acima tem a propriedade indesejável de que trata as últimas observações k de forma igualitária e ignora completamente todas as observações precedentes. Intuitivamente, os dados passados devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que o segundo mais recente, e o segundo mais recente deve ter um pouco mais de peso do que o terceiro mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Deixe 945 indicar uma constante de quotesmoothing (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série como estimado a partir de dados até o presente. O valor de L no tempo t é calculado de forma recursiva a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior em uma quantidade fracionada de 945. É o erro cometido em Tempo t. Na terceira versão, a previsão é uma média móvel ponderada exponencialmente (com desconto) com o fator de desconto 1- 945: a versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: ela se encaixa em uma Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior e a célula onde o valor de 945 é armazenado. Note-se que se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, supondo que o primeiro valor suavizado seja igual à média. (Voltar ao topo da página.) A idade média dos dados na previsão de suavização simples-exponencial é 1 945 em relação ao período para o qual a previsão é calculada. (Isso não deve ser óbvio, mas pode ser facilmente demonstrado pela avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a atrasar os pontos de viragem em cerca de 1 945 períodos. Por exemplo, quando 945 0.5 o atraso é de 2 períodos quando 945 0.2 o atraso é de 5 períodos quando 945 0.1 o atraso é de 10 períodos e assim por diante. Para uma média de idade dada (ou seja, a quantidade de lag), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão da média móvel simples (SMA) porque coloca um peso relativamente maior na observação mais recente - isto é. É um pouco mais quotresponsivech para as mudanças ocorridas no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 ambos têm uma idade média de 5 para os dados em suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no Ao mesmo tempo, não possui 8220forget8221 sobre valores com mais de 9 períodos de tempo, como mostrado neste gráfico: Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, portanto, pode otimizar facilmente Usando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor ideal de 945 no modelo SES para esta série é 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é 10.2961 3,4 períodos, o que é semelhante ao de uma média móvel simples de 6 termos. As previsões de longo prazo do modelo SES são uma linha direta horizontal. Como no modelo SMA e no modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança computados por Statgraphics agora divergem de forma razoável e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um pouco mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. Então a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não-sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quotARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1- 945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante para a série analisada aqui, o coeficiente MA (1) estimado é 0.7029, o que é quase exatamente um menos 0.2961. É possível adicionar a hipótese de uma tendência linear constante não-zero ao modelo SES. Para fazer isso, basta especificar um modelo ARIMA com uma diferença não-sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão uma tendência que é igual à tendência média observada durante todo o período de estimação. Você não pode fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial constante a longo prazo a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa de quotinflação adequada (taxa de crescimento) por período pode ser estimada como o coeficiente de inclinação em um modelo de tendência linear ajustado aos dados em conjunto com uma transformação de logaritmo natural, ou pode ser baseado em outras informações independentes sobre perspectivas de crescimento a longo prazo . (Voltar ao topo da página.) Browns Linear (ou seja, duplo) Suavização exponencial Os modelos SMA e os modelos SES assumem que não há nenhuma tendência de nenhum tipo nos dados (o que normalmente é OK ou pelo menos não muito ruim para 1- Previsões passo a passo quando os dados são relativamente barulhentos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. E quanto a tendências de curto prazo Se uma série exibir uma taxa de crescimento variável ou um padrão cíclico que se destaca claramente contra o ruído e, se houver necessidade de prever mais de 1 período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de alisamento exponencial simples pode ser generalizado para obter um modelo de alisamento exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência mais simples do tempo é o modelo de suavização exponencial linear Browns, que usa duas séries suavizadas diferentes centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo.) A forma algébrica do modelo de alisamento exponencial linear Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em várias formas diferentes, mas equivalentes. A forma quotstandardquot deste modelo geralmente é expressa da seguinte maneira: Seja S denotar a série de suavização individual obtida pela aplicação de suavização exponencial simples para a série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Suavização exponencial, esta seria a previsão de Y no período t1.) Então, deixe Squot indicar a série duplamente suavizada obtida aplicando o alisamento exponencial simples (usando o mesmo 945) para a série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, traga um pouco e deixe a primeira previsão igual a primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isso produz os mesmos valores ajustados que a fórmula com base em S e S, se estes últimos foram iniciados usando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Suavizante Brown8217s modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz com um único parâmetro de suavização coloca uma restrição nos padrões de dados que ele pode caber: o nível e a tendência Não podem variar a taxas independentes. O modelo LES de Holt8217s aborda esse problema ao incluir duas constantes de suavização, uma para o nível e outra para a tendência. A qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui, eles são computados de forma recursiva a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam o alisamento exponencial separadamente. Se o nível estimado e a tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão de Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é calculada de forma recursiva interpolando entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1- 945. A alteração no nível estimado, Lt 8209 L t82091. Pode ser interpretado como uma medida ruim da tendência no tempo t. A estimativa atualizada da tendência é então calculada de forma recursiva interpolando entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: a interpretação da constante de simulação de tendência 946 é análoga à da constante de alívio de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda muito lentamente ao longo do tempo, enquanto modelos com 946 maiores assumem que está mudando mais rapidamente. Um modelo com um grande 946 acredita que o futuro distante é muito incerto, porque os erros na estimativa de tendência se tornam bastante importantes ao prever mais de um período à frente. (Voltar ao topo da página.) As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas revelam-se 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume mudanças muito pequenas na tendência de um período para o outro, então, basicamente, esse modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados utilizados na estimativa do nível local da série, a idade média dos dados utilizados na estimativa da tendência local é proporcional a 1 946, embora não exatamente igual a ela. . Neste caso, isso é 10.006 125. Este não é um número muito preciso na medida em que a precisão da estimativa de 946 não é realmente 3 casas decimais, mas é da mesma ordem geral de grandeza que o tamanho da amostra de 100, então Este modelo está com uma média de bastante história na estimativa da tendência. O gráfico de previsão abaixo mostra que o modelo de LES estima uma tendência local um pouco maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pela montagem do modelo SES com ou sem tendência, então este é quase o mesmo modelo. Agora, isso parece previsões razoáveis para um modelo que deveria estimar uma tendência local Se você 8220eyeball8221 este gráfico, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foi estimado pela minimização do erro quadrado das previsões de 1 passo à frente, não de previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está procurando é erros de 1 passo a passo, você não está vendo a imagem maior das tendências em relação a (digamos) 10 ou 20 períodos. Para obter este modelo mais em sintonia com a extrapolação dos dados no olho, podemos ajustar manualmente a constante de alívio da tendência, de modo que ele use uma linha de base mais curta para a estimativa de tendência. Por exemplo, se optar por definir 946 0,1, a idade média dos dados utilizados na estimativa da tendência local é de 10 períodos, o que significa que estamos em média a tendência nos últimos 20 períodos ou mais. Aqui é o que parece o gráfico de previsão se definimos 946 0,1 enquanto mantemos 945 0,3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso extrapolar esta tendência mais de 10 períodos no futuro. E as estatísticas de erro Aqui está uma comparação de modelo para os dois modelos mostrados acima, bem como três modelos SES. O valor ideal de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com um pouco mais ou menos capacidade de resposta, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alpha 0.3048 e beta 0.008 (B) Holts linear exp. Alisamento com alfa 0.3 e beta 0.1 (C) Suavização exponencial simples com alfa 0.5 (D) Suavização exponencial simples com alfa 0.3 (E) Suavização exponencial simples com alfa 0.2 Suas estatísticas são quase idênticas, então realmente podemos usar a escolha com base De erros de previsão de 1 passo à frente na amostra de dados. Temos de voltar atrás em outras considerações. Se acreditamos firmemente que faz sentido basear a estimativa da tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos sobre se existe uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também daria mais previsões do meio da estrada para os próximos 5 ou 10 períodos. (Retornar ao topo da página.) Qual tipo de tendência-extrapolação é melhor: horizontal ou linear Evidências empíricas sugerem que, se os dados já foram ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar linear a curto prazo Tendências muito distantes no futuro. As tendências evidentes hoje podem diminuir no futuro devido a causas variadas, como obsolescência do produto, aumento da concorrência e recessões cíclicas ou aumentos em uma indústria. Por este motivo, o alisamento exponencial simples geralmente apresenta melhor fora da amostra do que seria de esperar, apesar da sua extrapolação de tendência horizontal de quotnaivequot. As modificações de tendências amortecidas do modelo de alisamento exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES da modificação amortecida pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. (Beware: nem todo o software calcula os intervalos de confiança para esses modelos corretamente.) A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de alisamento (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos adiante que você está prevendo. Em geral, os intervalos se espalham mais rápido, à medida que 945 se ampliam no modelo SES e se espalham muito mais rápido quando o alisamento linear, em vez do simples, é usado. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao topo da página.) OR-Notes são uma série de notas introdutórias sobre tópicos que se enquadram no título amplo do campo de pesquisa operacional (OR). Eles foram usados originalmente por mim em um curso OR introdutório que eu dou no Imperial College. Eles estão agora disponíveis para uso por qualquer estudante e professor interessado em OU, sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis no OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 exame UG A demanda por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual dessas duas previsões você prefere e por que o movimento de dois meses A média dos meses de dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9, obtemos: como antes A previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel de MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Em geral, verificamos que o alisamento exponencial parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão Exercício de 1994 UG A tabela abaixo mostra a demanda por um novo pós-afluxo em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria a sua previsão para a demanda no mês oito Aplicar o alisamento exponencial com uma constante de suavização de 0,1 para obter uma previsão da demanda no mês oito. Quais das duas previsões para o mês oito você prefere e por que o dono da loja acredita que os clientes estão mudando para este novo aftershave de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando alisamento exponencial com uma constante de suavização de 0,1 nós Obter: como antes, a previsão para o mês oito é apenas a média do mês 7 M 7 31.11 31 (como não podemos ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1. Em geral, vemos que a média móvel de dois meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança, precisamos usar um modelo de processo Markov, onde as marcas dos estados e nós precisamos de informações de estado inicial e probabilidades de troca de clientes (de pesquisas). Nós precisamos executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 exame UG A tabela abaixo mostra a demanda por uma determinada marca de navalha em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses nos meses três a nove. Qual seria a sua previsão para a demanda no mês dez Aplicar o alisamento exponencial com uma constante de suavização de 0,3 para obter uma previsão da demanda no mês dez. Qual das duas previsões para o mês dez você prefere e por que a média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel do mês anterior, ou seja, a média móvel do mês 9 m 9 20.33. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 10 é de 20. Aplicando suavização exponencial com uma constante de suavização de 0,3, obtemos: como antes, a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3. Em geral, verificamos que a média móvel de três meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão exame 1991 UG A tabela abaixo mostra a demanda por uma determinada marca de máquina de fax em uma loja de departamento em cada um dos últimos doze meses. Calcule a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,2 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda pelo aparelho de fax no mês 13. A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 A previsão para o mês 13 é apenas a média móvel do mês anterior, ou seja, a média móvel Para o mês 12 m 12 46,25. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é 46. Aplicando suavização exponencial com uma constante de suavização de 0,2 nós obtemos: Como antes, a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,2. No geral, verificamos que a média móvel de quatro meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demonstração sazonal da demanda, mudanças de preços, tanto esta marca como outras marcas, situação econômica geral, nova tecnologia. Exemplo de previsão, exame 1989 UG. A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,7 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que agora não podemos calcular um seis Média móvel do mês até que tenhamos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por isso, temos: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 A previsão para o mês 13 é apenas a média móvel para o Mês antes, ou seja, a média móvel para o mês 12 m 12 38,17. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é de 38. Aplicando suavização exponencial com uma constante de suavização de 0,7, obtemos:
No comments:
Post a Comment